Decidability of the Equational Theory of the Continuous Geometry $CG(\Bbb {F})$

نویسنده

  • John Harding
چکیده

Let F be the field of real or complex numbers. For n ≥ 1, the subspaces of the n-dimensional inner product space F form a modular ortholattice PGn−1(F), or simply PGn−1. This lattice has a normalized dimension function dn : PGn−1 → [0, 1] that associates to a subspace A, its dimension divided by n. von Neumann [7] showed there is an embedding PGn−1 ↪→ PG2n−1 that preserves normalized dimensions. So the inductive limit of the chain PG1 ↪→ PG3 ↪→ PG7 ↪→ · · · yields a modular ortholattice PG∞(F), or simply PG∞. This ortholattice PG∞ also has a dimension function, so is a metric lattice [1], and its metric space completion is a complete modular ortholattice CG(F), or simply CG. This CG was von Neumann’s first example of a continuous geometry. Our purpose is to show the equational theory of CG is decidable. The key tools are results of Herrmann and Roddy [3] on equations in modular ortholattices, and of Dunn, Hagge, Moss, and Wang [6] showing the first order theory of each PGn is decidable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual se...

متن کامل

Combining Equational Tree Automata over AC and ACI Theories

In this paper, we study combining equational tree automata in two different senses: (1) whether decidability results about equational tree automata over disjoint theories E1 and E2 imply similar decidability results in the combined theory E1 ∪ E2; (2) checking emptiness of a language obtained from the Boolean combination of regular equational tree languages. We present a negative result for the...

متن کامل

Instrument dependency of Kubelka-Munk theory in computer color matching

Different industries are usually faced with computer color matching as an important problem. The most famous formula which is commonly used for recipe prediction is based on Kubelka-Munk K-M theory. Considering that spectrophotometer’s geometry and its situation influence the measured spectral values, the performance of this method can be affected by the instrument. In the present study, three ...

متن کامل

Decidability of the equational theory of allegories

Freyd and Scedrov showed that the equational theory of representable allegories (essentially those allegories which have a settheoretic representation as relations) is decidable. This paper proves that the pure equational theory of allegories is decidable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Philosophical Logic

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2013